3.7.23 \(\int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}} \, dx\) [623]

Optimal. Leaf size=476 \[ -\frac {2 (A b-a B) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\text {ArcSin}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a b \sqrt {a+b} d \sqrt {\sec (c+d x)}}+\frac {2 (A b-a B) \sqrt {\cos (c+d x)} \csc (c+d x) F\left (\text {ArcSin}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a b \sqrt {a+b} d \sqrt {\sec (c+d x)}}-\frac {2 \sqrt {a+b} B \sqrt {\cos (c+d x)} \csc (c+d x) \Pi \left (\frac {a+b}{b};\text {ArcSin}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^2 d \sqrt {\sec (c+d x)}}+\frac {2 a (A b-a B) \sqrt {\sec (c+d x)} \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}} \]

[Out]

2*a*(A*b-B*a)*sin(d*x+c)*sec(d*x+c)^(1/2)/b/(a^2-b^2)/d/(a+b*cos(d*x+c))^(1/2)-2*(A*b-B*a)*csc(d*x+c)*Elliptic
E((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))
/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/b/d/(a+b)^(1/2)/sec(d*x+c)^(1/2)+2*(A*b-B*a)*csc(d*x+c)*Ellipti
cF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c)
)/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/b/d/(a+b)^(1/2)/sec(d*x+c)^(1/2)-2*B*csc(d*x+c)*EllipticPi((a+
b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*cos(d*x+c)^(1/2)*(a
*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/d/sec(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.49, antiderivative size = 476, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3040, 3071, 2888, 2873, 2874, 2895, 3073} \begin {gather*} \frac {2 a (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{b d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}+\frac {2 (A b-a B) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\text {ArcSin}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a b d \sqrt {a+b} \sqrt {\sec (c+d x)}}-\frac {2 (A b-a B) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\text {ArcSin}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a b d \sqrt {a+b} \sqrt {\sec (c+d x)}}-\frac {2 B \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{b};\text {ArcSin}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{b^2 d \sqrt {\sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x])/((a + b*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]]),x]

[Out]

(-2*(A*b - a*B)*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Co
s[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/
(a*b*Sqrt[a + b]*d*Sqrt[Sec[c + d*x]]) + (2*(A*b - a*B)*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[
a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)
]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*b*Sqrt[a + b]*d*Sqrt[Sec[c + d*x]]) - (2*Sqrt[a + b]*B*Sqrt[Cos[c +
 d*x]]*Csc[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -
((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(b^2*d*Sqrt[Sec[
c + d*x]]) + (2*a*(A*b - a*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(b*(a^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]])

Rule 2873

Int[Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Simp[-2*a*d
*(Cos[e + f*x]/(f*(a^2 - b^2)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[d*Sin[e + f*x]])), x] - Dist[d^2/(a^2 - b^2), Int[
Sqrt[a + b*Sin[e + f*x]]/(d*Sin[e + f*x])^(3/2), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2874

Int[Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Dis
t[(c - d)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] - Dist[(b*c - a*d)/(a - b
), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d,
e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2888

Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[2*b*(Tan
[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*El
lipticPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)],
 x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b]

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 3040

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[(a + b*Sin[e + f*x])^m*((
c + d*Sin[e + f*x])^n/(g*Sin[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 3071

Int[(((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]])/((a_) + (b_.)*sin[(e
_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Dist[B/b, Int[Sqrt[c + d*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]], x], x]
 + Dist[(A*b - a*B)/b, Int[Sqrt[c + d*Sin[e + f*x]]/(a + b*Sin[e + f*x])^(3/2), x], x] /; FreeQ[{a, b, c, d, e
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rubi steps

\begin {align*} \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{3/2}} \, dx\\ &=\frac {\left (B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}} \, dx}{b}+\frac {\left ((A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^{3/2}} \, dx}{b}\\ &=-\frac {2 \sqrt {a+b} B \sqrt {\cos (c+d x)} \csc (c+d x) \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^2 d \sqrt {\sec (c+d x)}}+\frac {2 a (A b-a B) \sqrt {\sec (c+d x)} \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}-\frac {\left ((A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx}{b \left (a^2-b^2\right )}\\ &=-\frac {2 \sqrt {a+b} B \sqrt {\cos (c+d x)} \csc (c+d x) \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^2 d \sqrt {\sec (c+d x)}}+\frac {2 a (A b-a B) \sqrt {\sec (c+d x)} \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}-\frac {\left (a (A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{b \left (a^2-b^2\right )}-\frac {\left ((-a+b) (A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{b \left (a^2-b^2\right )}\\ &=-\frac {2 (A b-a B) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a b \sqrt {a+b} d \sqrt {\sec (c+d x)}}+\frac {2 (A b-a B) \sqrt {\cos (c+d x)} \csc (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a b \sqrt {a+b} d \sqrt {\sec (c+d x)}}-\frac {2 \sqrt {a+b} B \sqrt {\cos (c+d x)} \csc (c+d x) \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^2 d \sqrt {\sec (c+d x)}}+\frac {2 a (A b-a B) \sqrt {\sec (c+d x)} \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 13.90, size = 1403, normalized size = 2.95 \begin {gather*} \frac {\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 (A b-a B) \sin (c+d x)}{b \left (-a^2+b^2\right )}-\frac {2 \left (a A b \sin (c+d x)-a^2 B \sin (c+d x)\right )}{b \left (-a^2+b^2\right ) (a+b \cos (c+d x))}\right )}{d}+\frac {2 \sqrt {\frac {a+b+a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{1+\tan ^2\left (\frac {1}{2} (c+d x)\right )}} \left (a A b \sqrt {\frac {a-b}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )+A b^2 \sqrt {\frac {a-b}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )-a^2 \sqrt {\frac {a-b}{a+b}} B \tan \left (\frac {1}{2} (c+d x)\right )-a b \sqrt {\frac {a-b}{a+b}} B \tan \left (\frac {1}{2} (c+d x)\right )-2 A b^2 \sqrt {\frac {a-b}{a+b}} \tan ^3\left (\frac {1}{2} (c+d x)\right )+2 a b \sqrt {\frac {a-b}{a+b}} B \tan ^3\left (\frac {1}{2} (c+d x)\right )-a A b \sqrt {\frac {a-b}{a+b}} \tan ^5\left (\frac {1}{2} (c+d x)\right )+A b^2 \sqrt {\frac {a-b}{a+b}} \tan ^5\left (\frac {1}{2} (c+d x)\right )+a^2 \sqrt {\frac {a-b}{a+b}} B \tan ^5\left (\frac {1}{2} (c+d x)\right )-a b \sqrt {\frac {a-b}{a+b}} B \tan ^5\left (\frac {1}{2} (c+d x)\right )-2 i a^2 B \Pi \left (\frac {a+b}{a-b};i \sinh ^{-1}\left (\sqrt {\frac {a-b}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|-\frac {a+b}{a-b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b+a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+2 i b^2 B \Pi \left (\frac {a+b}{a-b};i \sinh ^{-1}\left (\sqrt {\frac {a-b}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|-\frac {a+b}{a-b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b+a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-2 i a^2 B \Pi \left (\frac {a+b}{a-b};i \sinh ^{-1}\left (\sqrt {\frac {a-b}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|-\frac {a+b}{a-b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b+a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+2 i b^2 B \Pi \left (\frac {a+b}{a-b};i \sinh ^{-1}\left (\sqrt {\frac {a-b}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|-\frac {a+b}{a-b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b+a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-i (a-b) (-A b+a B) E\left (i \sinh ^{-1}\left (\sqrt {\frac {a-b}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|-\frac {a+b}{a-b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\frac {a+b+a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+i (a-b) (-A b+(2 a+b) B) F\left (i \sinh ^{-1}\left (\sqrt {\frac {a-b}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|-\frac {a+b}{a-b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\frac {a+b+a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}\right )}{b \sqrt {\frac {a-b}{a+b}} \left (a^2-b^2\right ) d \left (-1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\frac {1+\tan ^2\left (\frac {1}{2} (c+d x)\right )}{1-\tan ^2\left (\frac {1}{2} (c+d x)\right )}} \left (b \left (-1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )-a \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )\right )} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(A + B*Cos[c + d*x])/((a + b*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]]),x]

[Out]

(Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*(A*b - a*B)*Sin[c + d*x])/(b*(-a^2 + b^2)) - (2*(a*A*b*Sin[c
+ d*x] - a^2*B*Sin[c + d*x]))/(b*(-a^2 + b^2)*(a + b*Cos[c + d*x]))))/d + (2*Sqrt[(a + b + a*Tan[(c + d*x)/2]^
2 - b*Tan[(c + d*x)/2]^2)/(1 + Tan[(c + d*x)/2]^2)]*(a*A*b*Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2] + A*b^2*Sqrt
[(a - b)/(a + b)]*Tan[(c + d*x)/2] - a^2*Sqrt[(a - b)/(a + b)]*B*Tan[(c + d*x)/2] - a*b*Sqrt[(a - b)/(a + b)]*
B*Tan[(c + d*x)/2] - 2*A*b^2*Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2]^3 + 2*a*b*Sqrt[(a - b)/(a + b)]*B*Tan[(c +
 d*x)/2]^3 - a*A*b*Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2]^5 + A*b^2*Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2]^5 +
 a^2*Sqrt[(a - b)/(a + b)]*B*Tan[(c + d*x)/2]^5 - a*b*Sqrt[(a - b)/(a + b)]*B*Tan[(c + d*x)/2]^5 - (2*I)*a^2*B
*EllipticPi[(a + b)/(a - b), I*ArcSinh[Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2]], -((a + b)/(a - b))]*Sqrt[1 - T
an[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + (2*I)*b^2*B*EllipticP
i[(a + b)/(a - b), I*ArcSinh[Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2]], -((a + b)/(a - b))]*Sqrt[1 - Tan[(c + d*
x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] - (2*I)*a^2*B*EllipticPi[(a + b)/
(a - b), I*ArcSinh[Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2]], -((a + b)/(a - b))]*Tan[(c + d*x)/2]^2*Sqrt[1 - Ta
n[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + (2*I)*b^2*B*EllipticPi
[(a + b)/(a - b), I*ArcSinh[Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2]], -((a + b)/(a - b))]*Tan[(c + d*x)/2]^2*Sq
rt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] - I*(a - b)*(-(
A*b) + a*B)*EllipticE[I*ArcSinh[Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2]], -((a + b)/(a - b))]*Sqrt[1 - Tan[(c +
 d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + I*(
a - b)*(-(A*b) + (2*a + b)*B)*EllipticF[I*ArcSinh[Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2]], -((a + b)/(a - b))]
*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]
^2)/(a + b)]))/(b*Sqrt[(a - b)/(a + b)]*(a^2 - b^2)*d*(-1 + Tan[(c + d*x)/2]^2)*Sqrt[(1 + Tan[(c + d*x)/2]^2)/
(1 - Tan[(c + d*x)/2]^2)]*(b*(-1 + Tan[(c + d*x)/2]^2) - a*(1 + Tan[(c + d*x)/2]^2)))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(2015\) vs. \(2(436)=872\).
time = 0.49, size = 2016, normalized size = 4.24

method result size
default \(\text {Expression too large to display}\) \(2016\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/d*(A*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((
-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*b^2-B*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d
*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2+B*sin(d*x+c)
*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin
(d*x+c),(-(a-b)/(a+b))^(1/2))*b^2+2*B*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*
x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*a^2-2*B*sin(d*x+c)*(cos(d*x+
c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-
1,(-(a-b)/(a+b))^(1/2))*b^2-A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*
sin(d*x+c)*cos(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b-B*sin(d*x+c)*cos(d*x+c)*(
cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d
*x+c),(-(a-b)/(a+b))^(1/2))*a*b+B*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1
+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b-A*sin(d*x+c)*cos(d*x+
c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/s
in(d*x+c),(-(a-b)/(a+b))^(1/2))*b^2-B*cos(d*x+c)^2*a^2+B*cos(d*x+c)*a^2-A*cos(d*x+c)^2*b^2+A*(cos(d*x+c)/(1+co
s(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*cos(d*x+c)*EllipticE((-1+cos(d*x+c))
/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b+A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+
b))^(1/2)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b-A*(cos(d*x+c)/(1+cos(d*x+c
)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b
)/(a+b))^(1/2))*a*b-B*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/
2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b+B*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/
2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*
b+A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*cos(d*x+c)*Elli
pticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*b^2-B*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))
^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2)
)*a^2+B*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*
EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*b^2+2*B*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*
x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(a
+b))^(1/2))*a^2-2*B*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(
a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*b^2+A*cos(d*x+c)*b^2-A*sin(d*x+c)*E
llipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/
(1+cos(d*x+c))/(a+b))^(1/2)*b^2+B*cos(d*x+c)^2*a*b-B*cos(d*x+c)*a*b+A*cos(d*x+c)^2*a*b-A*cos(d*x+c)*a*b)*(1/co
s(d*x+c))^(1/2)/sin(d*x+c)/(a+b*cos(d*x+c))^(1/2)/b/(a-b)/(a+b)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)^(3/2)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {A + B \cos {\left (c + d x \right )}}{\left (a + b \cos {\left (c + d x \right )}\right )^{\frac {3}{2}} \sqrt {\sec {\left (c + d x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))**(3/2)/sec(d*x+c)**(1/2),x)

[Out]

Integral((A + B*cos(c + d*x))/((a + b*cos(c + d*x))**(3/2)*sqrt(sec(c + d*x))), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)^(3/2)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {A+B\,\cos \left (c+d\,x\right )}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^(3/2)),x)

[Out]

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^(3/2)), x)

________________________________________________________________________________________